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Abstract 

The role of discounting in the management of climate change is a hotly 

debated issue. Many scientists and laymen concerned with potentially 

catastrophic impacts feel that if an increase in the discount rate drastically 

increases the likelihood of catastrophic outcomes, this discredits economic 

cost-benefit calculations. This paper argues that this intuition is sound. If 

cost-benefit calculations are done within a model that encompasses the type 

of catastrophic threshold effects that these scientists worry about, the 

resulting stabilization target will only be slightly influenced by the discount 

rate.  

 

 

 

 

 

 

 

 

 

 

 

Key words: climate change, discounting, catastrophic risk, optimal control. 

 

 2 



1. Introduction 

Discourse on policy responses to climate change has a tendency to become a debate 

on the appropriate method of discounting. The Stern Review was severely criticized 

by influential economists such as William Nordhaus and Martin Weitzman who 

claimed that much of the results where artificially driven by low discount rates [15], 

[9], [21]. Indeed, much of the discussion about these models boils down to the 

appropriate choice of numerical value for the pure rate of time preference and 

measures of income inequality aversion, [3]. To the extent that the pure rate of time 

preference actually matters for climate policy this is a fruitful debate, but it is not 

clear that the pure rate of time preference is of paramount importance if climate 

change induces catastrophic risk which must be managed. In the literature there are 

numerous attempts to take account of an uncertain future, like irreversibilities. As 

demonstrated, for instance by Gollier [5],[6], and by Weitzman [19],[20], a time-

dependent and declining discount rate can be rationalised so that future uncertainty 

or risk will be properly accounted for. It has for some time been recognized that 

climate change carries with it the risk of catastrophes when certain boundaries, 

termed thresholds or tipping points are crossed. Examples of possible catastrophic 

scenarios include coral bleaching, marine ice sheet instability, methane hydrate 

destabilization and disruption of the thermohaline circulation (Gulf Stream),[12], [7], 

[1], [8]. There is unfortunately a disconnect between scientists concerned with 

potentially catastrophic threshold effects and economists who do not include them in 

their models, or simply ignore them because the catastrophic event is expected to 

occur in the far-distant future. This has led to an unfortunate breakdown of 

communication between the scientists who feel that the intelligent management of 

catastrophic risk should not be very sensitive to discounting while economists armed 

with results from integrated assessment models claim that the pure rate of time 

preference is a crucial parameter in climate policy. 

 

The economic analysis of problems with threshold risk is obviously confounded by the 

lack of precise knowledge about the location of these thresholds. Partha Dasgupta has 

even suggested that the existence of such tipping points may severely restrict the 

usefulness of cost-benefit analysis, [4]. It is therefore all the more worrisome that 

threshold risk is not an integral part of current economic models of climate change. 

Further, if threshold effects are an important part of the possible damages induced by 
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climate change, one may argue that economic discourse on the role of discounting is 

premature until its effect in dynamic models with threshold risk is properly 

understood.    

 

There is very little formal economic analysis of threshold effects with unknown 

threshold location, and what there is pays very little attention to the role of the pure 

rate of time preference, [10], [11], [16], [17]. The exception is [18] where it is shown 

how threshold risk turns the socially optimal discount rate endogenous to climate 

change policy. However, the importance of the pure rate of time preference is not 

addressed here either. Here we present a stylized model showing that if catastrophic 

risk of crossing a crucial climate threshold is incorporated into an economic decision 

model, the pure rate of time preference is of little importance for the question of what 

level to stabilize atmospheric CO2. The model is solved analytically and contains a 

number of simplifying assumptions in order to clarify the role of the pure rate of time 

preference rate when attempting to control catastrophic climate risk. We assume risk-

neutrality and standard exponential discounting. The consequence of a catastrophe is 

modelled as a fixed cost which does not entail the possibility of the marginal utility of 

consumption becoming infinite. Thus our model is different from [22], where the 

discount rate does not matter because the fat tails associated with statistical 

estimation of parameters implies a positive probability of an outcome with infinite 

marginal utility and therefore an infinite willingness to pay for avoiding this outcome. 

The model is aimed to capture the rational deliberations of a standard economic 

decision maker who faces the possibility of a severe catastrophe, which does not 

however entail an outcome where the human race is pushed to or below a minimum 

subsistence level. Our results indicate that when the threshold nature of catastrophic 

climate change is properly incorporated into an economic decision model, the 

numerical value of the discount rate is of marginal importance for the long-term 

choice of CO2 stabilization level. Although it remains to be seen whether our results 

carry over to more realistic numerical models of climate management, it may be that 

much of the discussion about discounting and climate change is not as relevant as one 

could believe when examining results from the current crop of largely deterministic 

numerical models. 
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2. A Simple Model of Carbon Emissions and Catastrophic Risk 

Here we present a stylized model of catastrophic climate change. Threshold effects 

require somewhat specialized optimal control techniques. Let the stock of atmospheric 

CO2 above pre-industrial levels be determined by the following differential equation: 

 

 
( )

( ), 0  given.
dx t

u t x t x
dt

 (1) 

 

Here x is the stock of atmospheric carbon above pre-industrial levels, u is the flow of 

CO2 emissions and  is the inverse of the mean atmospheric lifetime of CO2. Assume 

further that there is a threshold x  such that if x = x  then an irreversible 

catastrophic event is triggered. The threshold location x  is a random variable with a 

positive density function f(x) on [xL, ). We have defined xL to be the highest value 

of x known to be below the true threshold. As x is a function of t, then for any given 

function u(t) the point in time  such that x( ) = x  is a random variable. Thus for 

any path x(t) one can translate the distribution of x  over x into a distribution over 

time. This translation is a bit involved and is therefore developed in a heuristic 

manner. A more technical treatment is given in the Appendix. This is illustrated in 

Figure 1 which shows an arbitrary sample path x(t), which should not be taken to be 

optimal. Every point on the x(t)-axis is a possible threshold location. The path 

oscillates until t = D for then to converge to x( ). The key to understanding the 

stochastic process generated by the threshold is that there is only a risk of crossing 

the threshold if x(t) is taking values that have not previously been attained. Thus in 

the interval [O, A], x (t) is positive and x(t) > x(s) for all t > s. There is therefore 

some probability that the threshold will be crossed in the time interval [O, A]. At A, 

x (t) changes sign and over the interval [A, B], x(t) xA which implies that x is 

running through values known to be safe. At B, x(t) again enters uncharted territory 

with some risk of crossing the threshold until time C when x(t) = xC. At time C, x(t) 

takes another dip and there is again no probability of crossing the threshold until 

time D when x(D) again equals xC . 
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Figure 1, Threshold effects under uncertainty 

 

In Figure 1, x(t) converges towards x( ) as time increases. x(t) increases 

monotonously from time D, so there is always some probability that the threshold 

will be crossed in any given time interval. However, as the rate of increase in x(t) 

becomes smaller and smaller, the probability per unit of time that the threshold will 

be crossed becomes smaller and smaller and goes to zero as time goes to infinity. The 

probability that the threshold will be crossed at some point in time is then 

L

x

x
f x dx .  

When optimizing processes with catastrophic risk it is often convenient to work with 

the hazard rate. The hazard rate of f(x) is given by 
x

x  and is defined by: 

 
0

Pr , |
lim

1
L

x xdx

x

x x x dx x x f x
x

dx f y dy
 (2) 

For the purpose of optimization we need to transform this hazard rate to the time 

domain. It is shown in the appendix that the hazard rate in the time domain is given 

by: 
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 0,
( ) ( ) for ( ) 0 and sup

0 elsewhere

x
s t

x t x t x t x t x s
t  (3) 

This rather awkward definition holds for an arbitrary x(t). It is shown below that 

along an optimal path, the hazard rate will simplify to max 0,
x

x x

x t

. For ease of 

exposition we assume an exponential distribution for the threshold location, with a 

constant intensity , distributed over [x(0), ). Thus the hazard rate is: 

  (4) max 0,t u t

The catastrophic event that occurs when x( ) = x  is that society incurs a constant 

loss of utility flow given by G per unit of time.1 This loss is assumed to be 

irreversible.2 Formally we define a state-variable  with (0) = 0, so that , t

0
d t

dt
 and having a jump at the unknown , as given by .  

Finally, assume that the cost of emission reduction is given by: 

( ) ( ) G

 
2

0

2
c

C u u u  (5) 

Here u0 denotes the �“business as usual�” emission levels and represents the optimal 

emissions in the absence of environmental consequences. Setting u to u0 implies that 

emission reduction costs are minimized and so u0 may be thought of as the emissions 

in the absence of regulation and therefore an upper bound on emissions. In order to 

focus on the role of catastrophic risk, no other damages from CO2 emissions are 

included in the model. In addition to the threshold effect, CO2 is also assumed to 

have a stock pollutant effect with the marginal damage of the stock of CO2 for 

simplicity assumed to be a. The principles of conventional economic analysis then 

lead to the following planning problem, where E  is the expectation operator: 

 

 
2

0

0

max
2

rt

u t

c
E t ax u u e dt

                                    

 (6) 

 

 
1 The assumption that the disaster gives rise to a constant flow of disutility is not crucial as it is 

always possible to replace the integral for net present value of actual damages with an equivalent 

annuity of damages. Furthermore, the chosen hazard rate  implies a rather �“optimistic�” view as to 

the occurrence of the catastrophe. A more realistic approach would require this hazard rate to increase 

with x.   
2 We have irreversible consequences of climate change as opposed to e.g. [13] where a regulator chooses 

an irreversible action.  
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subject to (1), (4), and (7) below, with  given, with (0)x 00,u u  for all , and r as 

the much maligned rate of time preference which we from hereon will simply term the 

discount rate. Note that the model employs traditional exponential discounting with 

a constant utility discount rate and no risk aversion. The state variable  satisfies: 

t

 

  (7) ( ) 0 , 0 0,t t G

 

2.1. Optimal Stabilization Targets 

The solution to the optimization problem in (6) is an optimal path of emissions and a 

corresponding time path of CO2, contingent on the threshold effect not occurring. 

These paths are to be chosen as long as the threshold is not crossed. In order to 

calculate these paths we also need to calculate optimal paths contingent on the 

occurrence of the catastrophe. A general algorithm for solving threshold problems 

may be found in [10], based on a general algorithm for piecewise deterministic control 

problems derived in [14]. The solution is found recursively. First one solves the 

problem conditional on the threshold effect having occurred at some point in time . 

This problem is given by: 

 
2

0, max
2

r

u s

c
J x e G ax u u e dsrs  (8) 

Note that we here have scaled the objective in order to get the maximum expressed 

in current value terms. This expression is maximised subject to x u  and that 

x( ) has some arbitrary value. Note that the problem is now deterministic and that 

the magnitude of constant G will not affect the solution. The solution to 

x

(8) is 

straightforward to solve with standard control techniques. 

 

0

0

| ,

| ,

| ,

a
u s x u

c r

a
s x

r
u c r a

x s x
c r

 (9) 

Here (s| , x( )) is the standard current value co-state variable. We will also need 

the expression for , which by integrating ,J x (8) after inserting from (9) is 

found to be: 

 8 



 
2 0

2

2 ( )

)
,

2 (

a a ac
J x

u r G
x

r rcr r
 (10) 

Having characterized the optimal solution after the threshold has been crossed, we 

may proceed to solve for the optimal emissions path prior to crossing the threshold. 

Here we will need the expression for  in | ,s x

,J t x t

(9) and  ,J x (10). In 

particular we will use  and  which is interpreted as the shadow 

price on x and the value function respectively, conditional on crossing the threshold 

at t. The solution is expressed in terms of a risk-augmented Hamiltonian given by: 

| ,t t x t

 
2

0 ( ) ,
2
c

H ax u u u x t J t x t z t  (11) 

Here (t) is the hazard rate defined in (3). Note that t in  now denotes 

running time. z(t) is an auxiliary variable which has the interpretation of being the 

value of the objective function evaluated from time t, conditional on the threshold 

not being crossed at that any time less than or equal to t. The term 

,J t x t

,x t z tJ t  

is thus the net cost of the threshold being crossed at time t. 

 

  0 ,u u J t x t z
c c

 (12) 

 ( ) | , ,
H

r a r u x t t x t J t x t z
x

 (13) 

 
2

0

2
,

c
z rz ax u u u x z tJ t x t  (14) 

 

After inserting for | ,t t x t  from (9) and  from ,J t x t (10), equations (1), (12) 

�– (14), coupled with appropriate transversality conditions define the optimal paths, 

possibly only prior to possibly crossing the threshold.  Setting time derivatives equal 

to and solving these equations along with (1) for u, x,  and z gives the steady state 

solution. The solution for x is the may be interpreted as an Optimal Stabilization 

Target (OST) above which CO2 should not be allowed to increase. This level is given 

by: 

 
0 221

lim 2ss

t

u a
x x t r r G

cc r
 (15) 

Emissions will converge to: 

 
220 1

lim 2ss

t

a
u u t u r r G

cc r
 (16) 
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The steady state stock of CO2 may be decomposed in the following manner: 

 

 

0

22

lim  where

1
, 2

ss ss ss
a Gt

ss ss
a G

u
x x t x x

a
x x r r

cc r
G

 (17) 

 
ss
a

x  and  are the respective steady state changes in CO2 stock due to the stock 

pollutant effect and the threshold effect. Note that both these terms are strictly 

negative.  has some intuitive properties. E.g.: 

ss
G

x

ss
G

x

  (18) 
0 0

lim lim 0ss ss
G GG

x x

 

If there is almost no risk or the cost of crossing the tipping point is close to zero, then 

the reduction in steady state stock of atmospheric CO2 due to the threshold effect 

goes to zero. These steady states values may be interpreted as stabilization targets. 

However, some care must be taken when interpreting these steady state values. First, 

it is only optimal to let x(t) and u(t) converge to xss and uss if x(0)   xss. Also note 

that for some parameter values, e.g. sufficiently high values of G, the steady state 

levels will become negative. Obviously this is not realistic. Indeed, according to the 

following proposition it is never optimal to let x(t) be decreasing over any time 

interval. These assertions are formally proven in Propositions 1 and 2. 

 

Proposition 1. 

Suppose that x(0)  u0/ . The optimal solution will then exhibit a non-

decreasing path for the stock variable x(t). 

ss
a

x

 

The proof of this proposition is given in the appendix. Intuitively, the result follows 

from the existence of a threshold effect. In the present model, the environmental 

damage occurs only if the threshold is crossed. If x* is the highest level of x that has 

previously occurred, then it is known that all values of x < x* are below the 

threshold and therefore safe. There is therefore no incentive to reduce x below x*. A 

corollary to Proposition 1 is given in Proposition 2.  
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Proposition 2. 

Suppose we have u0/  > x(0)  xss. Then the optimal path requires that x(t) 

= x(0) for all t and that the optimal control should take the value u(t) = x(0) for all 

t.  

ss
a

x

 

Proof: The proof is quite simple. Proposition 1 rules out the possibility of x(t) 

oscillating or decreasing, so if Proposition 2 is false, x(t) must strictly increasing and 

non-convergent for all t or converge to some steady state in the interval (xss, 

u0/ ). x(t) cannot be strictly increasing and non-convergent as this would 

imply that u(t) at some point increases to levels above u0, which is not optimal. Nor 

can x(t) converge to a steady state in (xss, u
0/ ) as no such steady state exists. 

ss
a

x

ss
a

x
 

 

Intuitively, Proposition 2 says that if the system is not regulated until after x(t) has 

increased above the desired stabilization level implied by (15), then this stabilization 

level loses its relevance. By luck one has been able to reach a stock level of x(t) that 

is too high from an optimality perspective and can therefore enjoy the decreased costs 

from emission reductions that is induced by this luck. Having had this luck however, 

it does not pay to stretch it further by allowing even larger increases in x(t) relative 

to xss.  

2.2. Discounting and the Effect on Stabilization Targets 

Evidently, the steady-state solutions in (15) and (16) depend on the discount rate. 

However, a closer examination shows that the discount rate affects  and  in 

very different ways. In , r enters the denominator multiplicatively as a very 

small number it is therefore not surprising that small changes in r may have a large 

impact on stabilization targets. In , however r enters the expressions additively 

in the numerator. Adding small numbers to a numerator will, roughly speaking, have 

a very small effect on a number. To see this, examine the terms within the 

parenthesis: 

ss
a

x ss
G

x
ss
a

x

ss
G

x

 

 
22

2r r G
c

 (19) 
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Defining r +  to be A and 2G 2c-1 to be B, the non-positive expression in (13), may 

be written: 

 

 2A A B  (20) 

 

Let the unit of time be �“one year�”. The annual discount rate is then typically lower 

than 0.07. 1/  is the average lifetime of a CO2 molecule in the atmosphere. This 

number was popularly believed to be of the order of a few hundred years, but recent 

work indicates that it may be considerably higher, which implies that  is at the very 

highest 1/200, but may be considerably smaller, see [1]. In any case, the number A is 

of the order of magnitude 10-1. The number B depends on the ratio of the cost of 

catastrophe G and, roughly speaking, the cost of emission reduction c. If the 

catastrophe has consequences that are truly serious so that the number B is of an 

order of magnitude, say 106 or more, then B will clearly dominate the expression in 

(13). Indeed, the expression has A minus the root of the square of A plus something 

and will tend to disappear. We can formalize this by examining the respective 

elasticities of  and .  ss
G

x ss
a

x

 
2

2

E
2

l , El

( )

ss ss
a Gr rss ss

r a r Gss ss
a G

x xr
x r x r

rx x

r

G
r

c

 (21)  

Remember that  is at the most 1/200. To simplify, let us examine these elasticities 

when  = 0.  

 
2

2

El 1, El
2

ss ss
r a r G

r

x x
r

G
c

 (22) 

The difference is quite striking. If we only concern ourselves with the deterministic 

stock pollutant effect, a 1% increase in r, say from 5% to 5.05% would imply that 

steady state CO2 stocks should be allowed to increase by 1%. In the present model, 

this implies that an increase in r by one percentage point implies a decrease in 

reductions of 20%!  On the other hand, if we are concerned only about the threshold 

effect, the elasticity  is a small negative number. Indeed, if B is a number of 

some magnitude,  is for practical purposes indistinguishable from 0.  

El ss
r G

x
ss

r G
xEl
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It should be clear from this discussion that the discount rate does not matter much 

for what level one should stabilize atmospheric CO2 if one is primarily concerned with 

tipping points or threshold effects. As the probability of crossing the threshold is 

given by the integral , this probability is not very dependent on the 

discount rate either. Any fruitful scientific and economic discussion about this topic 

should therefore focus on the magnitude of the parameters G, c and . This does not 

imply that the interest rate is completely insignificant. The path of emissions and 

atmospheric CO2 leading up to the stabilized levels in 

(0)

( )
ssx

x

f x dx

(15) and (16) will in general be 

sensitive to changes in interest rates, but for the determination of the actual 

stabilization targets, the discount rate plays a minor role.  

3. Summary 

The debate between proponents of conventional discounting and sceptics concerned 

about catastrophic risk is somewhat misplaced as the role of discounting in 

catastrophic risk is minor if the threshold nature of the risk structure is accounted 

for. To the extent that threshold effects are important in climate change, this should 

be incorporated into integrated assessment models and thereby conciliate the results 

of these models with the concerns of climate scientists. 
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Appendix 

 

Derivation of the hazard rate, . 

 

The threshold location is distributed over the interval (xL, xH) where xH   with a 

pdf given by f(x) and a cdf given by F(x). By definition the hazard rate associated 

with f(x) is given by:  

 
0

Pr , |
lim

1x dx

x x x dx x x f x
x

dx F x
 

Now let x(t) be an arbitrary continuous and piecewise differentiable function such 

that x(0) = xL,  in points of differentiability and let  solve the 

equation x( ) = 

,x t h t x t

x . If h(t, x(t)) is everywhere non-negative, if follows from a standard 

property of the integral operator that: 

 
0 0

,
L

x t t t

x

F x t f y dy f x s x s ds f x s h s x s ds  

If h(t, x(t)) is not everywhere non-negative, we must avoid assigning positive 

probability to time intervals where x take values known to be safe. This is done by 

defining a function (t) with the property that: 

  ,
,  for , 0 and sup

0 otherwise
s t

h t x t h t x t x t x s
t

The cdf for the distribution of the event t =  is then given by: 

  
0

t

F x t f x s s ds

The corresponding pdf is then given by: 

  f t f x t t

It follows from the definition of the hazard rate that the hazard rate for the point in 

time of event occurrence is given by: 

 

0

1
1

t

f x t t f x t t

F x t
f x s s ds
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Proof of Proposition 1 

To avoid cluttered notation we show the proposition under the assumption that a = 

0. If the proposition is false, then one of the following conditions must hold: 

 

Condition 1: There must exist a t* such that x(t) < x(t*) for all t > t*.  

Condition 2: There must exist a t* and t** > t* such that x(t*) = x(t**) and x(t) 

< x(t*) for all t  (t*, t**). 

 

Bear in mind that emissions will never exceed u0 implying that x will never exceed 

u0/ . If Condition 1 holds, then (t) = 0 for all t > t*. If this is the case, then the 

optimal path must solve the deterministic control problem 

 
2

0
2

*

max [ ] . . ,  *  givenrtc

u
t

u u e dt s t x u x x t  

 

It is straightforward to see that this problem has the unique solution u(t) = u0. For 

all x(t*)  u0/ , x(t) will therefore be increasing; hence we have a contradiction.  

 

If Condition 2 holds, optimality implies that the optimal path over [t*, t**] solves the 

following optimization problem: 

 

 
*

2
0

*

max [ ] , . . , * * * given
2

t
rt

u t
t

c
u u e dt s t x u x x t x t  

 

Here  = t** �– t*. This is again a straightforward deterministic optimal control 

problem. Solving this problem yields that, for any , x(t) = x(t*) for all , 

implied by a constant emission rate  for any 

* **,t t t

*( )u x t * **,t t t ; which contradicts 

our assumption. 
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Appendix �– Piecewise Deterministic Optimal 

Control of Poisson Processes. 

This appendix presents necessary conditions for Piecewise Deterministic Optimal 

Control problems. The conditions presented here are due to Seierstad (2008). Similar 

expositions to this one may be found in [10] or [11] referenced in the main text. 

Although alternative, but equivalent, formulations exist in the literature this method 

is to our knowledge the most general. In addition, this formulation has two 

advantages that other formulations do not have. 

 

1. The Hamiltonian and co-state variables have interpretations that are equivalent 

to the interpretation of these quantities in deterministic control theory. 

2. The necessary conditions often take the form of autonomous differential equations. 

This facilitates steady state analysis. 

  

The general problem to be studied is: 

 

  (A.1) 
0

0, 0 max ,
T

rt

u U
J x E f x u e dt

  (A.2) . : , 0 , ,m ns t u x x g x u

  (A.3) 0~  ov  
t

x d
x t e er [0, )

,

  (A.4) x x q x

 

All functions are assumed to be twice differentiable. The interpretation of this 

problem is that of controlling a process that yields instantaneous utility f( ) over 

some time span. The state variable, x, is controlled by choosing a control u. There is 

a Poisson process going on in the background distributed over time. This process has 

a hazard rate given by (x(t)). If or when, the random event driven by the Poisson 

process occurs at a time  there is a shock to the state variable given by 

 = .  x x q x

 

  (A.5) , , , |H f x u g x u x J t x q x t J t x
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This Hamiltonian differs from the Hamiltonian from deterministic control theory only 

by the term (x)( ). J(t, x) is defined by the solution to 

problem: 

, |J t x q x t J t x,

er [ , )

 

  (A.6) , max ,
T r s t

u U t
J t x E f y u e ds

  (A.7) . : , , ,m ns t u y t x y g y u

  (A.8) 0~  ov  
s

x d
x s e t

  (A.9) x x q x

 

This problem is exactly the same as the problem posed in Equations (A.1) - (A.4) 

except that the problem starts from an arbitrary point (t, x). J(t, x) is thus the value 

to the objective function when the problem starts from some arbitrary point in (t, x) 

space. The term  is defined by: , |J t y t

 

 , | max ,
T r s t

u U t
J t x t f y u e ds  (A.10) 

  (A.11) . : , , ,m ns t u x y g y u

H

This problem differs from the one posed in Equations (A.1) - (A.4) in two respects. 

The problem is a deterministic problem and the starting point is an arbitrary point in 

(t, x) space after the shock has happened. In order to solve the problem in equation 

(A.1) one must find a solution to (A.10). The solution to (A.10) will be a function 

, a control  and a co-state . It is clear that J(t, x | t) = 

 is the value of criterion after a shock has driven the 

system to some arbitrary state x at time t. J(t, x | t) is thus the criterion 

conditional on the event  occurring at time t. The interpretation of 

 should now be clear. It is the net loss (or gain) to the 

objective system if the shock occurs at an arbitrary point in time t and results in the 

state variable taking the value x. Now apply the maximum principle to the 

Hamiltonian in 

| ,y s t x

t
f y

J t x

| ,u s t x

| , rss t x e

,J t x

| ,s t x

| , ,s t x u ds

, |q x

(A.5). Doing so yields the following conditions:  

  (A.12) argmax
y

u
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, ,

, , | , ,

x x

H
r r f x u g x u

x

x J t x J t x q x x J t x J t x q x
x x

|
 (A.13) 

 

Coupled with the appropriate transversality condition, the solution is determined by 

the equation for x , (A.17) and (A.18). It follows from standard results in 

deterministic control theory that: 

 

 , , | | , n
x

J t x q t x t t x q x I q
x

 (A.14) 

 

Here In is the n-dimensional identity matrix. The final piece of information required 

to solve the problem in (A.1) is an expression for J(t, x), as this expression and an 

expression for ,
x

J t x

,

 are needed in order to solve (A.13).   

 

To find an expression for J(t, x), define the following differential equation: 

 

  (A.15) , ,z rz f x u x z J t x q t x

 

The solution to (A.15) is a function z(t) that is equal to J(t, x(t)) along the optimal 

path. Seierstad (2003) has proven that: 

 

 ,J t x t
x

z

 (A.16) 

 

Rewriting (A.17) and (A.18), using (A.14), (A.16) and exchanging J(t, x) with z 

gives: 

  (A.17) argmax , , , , |
u

u f x u g x u x J t x q t x

 
, ,

| , , |

x x

n
x

H
r r f x u g x u

x
x t t x q x I q x J t x q x t z

 (A.18) 

 

The differential equations in (A.15), (A.17), (A.18) and the differential equation  = 

f(x, u) gives the necessary conditions required to solve the problem at hand when 

x
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coupled to the appropriate transversality conditions. For the case where T < , the 

transversality conditions are given by:  

 

  (A.19) 0T

  (A.20) 0z T

 

Equation (A.19) is the transversality condition on the co-state. Paralleling the 

interpretation of the co-state variable in the deterministic problem, the interpretation 

is that at the end of the planning horizon, the marginal value of x is zero in the 

absence of any scrap value. The condition that z(T) = 0, is best understood by 

noting from the definition of z(t) that z(T) = J(T, x(T)). Thus, z(T) is the 

�“remaining�” utility to be consumed at the end of the planning horizon and equal to 

zero. If T = , then as long as instantaneous utility is bounded, the following 

conditions will usually work and be consistent with Catching Up Optimality. If x is 

the optimal path, then for all admissible paths y satisfying u  U and y = g(y, u). 

 

  (A.21) lim 0rt

t
e y t x t

                                    

  (A.22) lim 0rt

t
z t e

 

These conditions are required to take care of some special cases that turn up in 

infinite horizon models. These conditions may often be replaced by ( ) = z( ) = 

0. In particular, this is the case if the steady state is unique.3 If the limit in equation 

(A.21) does not exist, which will only be the case in very rare problems, the lim 

operator must be replaced by lim inf. 

 
3The issues involved here are parallel to the problems encountered in deterministic control theory. See 

Seierstad and Sydsæter (1987), pp 229-250. 
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